Category: Mobile


Li-Fi LED Wireless Breakthrough

Light Fidelity

Researchers say they have achieved data transmission speeds of 10Gbit/s via “Li-Fi“; wireless internet connectivity using light via micro-LED light bulbs to transmit 3.5Gbit/s via each of the three primary colors – red, green, blue – that make up white light.

This means over 10Gbit/s is possible.

Li-Fi is an emerging technology that could see specialized LED lights bulbs providing low-cost wireless internet connectivity almost everywhere.

The research, known as the ultra-parallel visible light communications project, is a joint venture between the universities of Edinburgh, St Andrews, Strathclyde, Oxford, and Cambridge in the UK, and funded by the Engineering and Physical Sciences Research Council.

The tiny micro-LED bulbs, developed by the University of Strathclyde, Glasgow, allow streams of light to be beamed in parallel, each multiplying the amount of data that can be transmitted at any one time.

“If you think of a shower head separating water out into parallel streams, that’s how we can make light behave,” said Professor Harald Haas, an expert in optical wireless communications at the University of Edinburgh and one of the project leaders.

Using a digital modulation technique called Orthogonal Frequency Divisional Multiplexing (OFDM), researchers enabled micro-LED light bulbs to handle millions of changes in light intensity per second, effectively behaving like an extremely fast on/off switch.

This allows large chunks of binary data – a series of ones and zeros – to be transmitted at high speed.

Professor Haas coined the term “light fidelity” or li-fi – also known as visual light communications (VLC) – and set up a private company, PureVLC, to exploit the technology.

Li-Fi promises to be cheaper and more energy-efficient than existing wireless radio systems given the ubiquity of LED bulbs and the fact that lighting infrastructure is already in place.

Visible light is part of the electromagnetic spectrum and 10,000 times bigger than the radio spectrum, affording potentially unlimited capacity.

Another advantage, Professor Haas argues, is that evenly spaced LED transmitters could provide much more localized and consistent internet connectivity throughout buildings. The disadvantage of traditional Wi-Fi routers is that the signal weakens the further you are away from it, leading to inconsistent connectivity within offices and homes.

Professor Haas also believes light’s inability to penetrate walls makes VLC technology potentially more secure than traditional Wi-Fi connectivity.


Farewell To Concorde Summer 2003

Concorde during one of it’s final flights from New York (JFK) to London (LHR) in the Summer of 2003.

So what was it like to fly on the Concorde from New York to London in 3 hours and 15 minutes at twice the speed of sound? To find out, simply watch this short film!

Highlights include the Captain’s commentary of the unique take-off, breaking the sound barrier and landing plus food & life onboard. It shows what it was like as a passenger on board the the aircraft at Mach 2.0 (twice the speed of sound) at an altitude of 57,000 feet.